走査型オージェ電子分光分析装置 PHI680S

操作マニュアル(基本編)

大阪大学接合科学研究所技術部

Ver.1.5

目次

使用上の注意点		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
アイソレーショ	ンノ	เ้า	ィブ	に	つ	L١	τ		•	•	•	•	•	•	•	•	•	•	•	4
試料について	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
非常時の対応	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
通常起動・・	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
Vacuum	Wä	a t	С	h	e	r	に	つ	L١	τ		•	•	•	•	•	•	•	•	10
試料導入 ・・	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 1
SEM像の観察		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
SEMメニュー		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
SERVEY		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
イオンガン起動		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
イオンガン停止		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
その他分析の流	れ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
通常停止・・	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22

【使用上の注意点】

この装置はあらかじめ利用申請し、使用許可を得なくては使用できません。 申請されていない方は、E-mailで申請願います。

この装置の使用は、SEM(走査型電子顕微鏡)の使用経験がある方に限らせていただき ます。

試料ホルダ、取扱説明書類、ソフトウェアなどは、絶対に無断で室外に持ち出さないでく ださい。

装置の維持・管理には最善を尽くしておりますが、状態により、使用条件等を制限することもあります、その場合、装置に条件等を掲示いたしますので、必ずお守りください。

コンピュータの画面のウインドウのタイトルは、"PC-ACCESS"や、"Vacuum Watcher" のように表し、ボタン等のキャプションは、[PUMP INTRO]のように表しています。コンピュ ータ画面上での操作は、DETECTER SED のように表しています。

また、スイッチの操作やバルブの操作などは、電源 ONや、アイソレーションバルブ CLOSE のように表しています。

"PC-ACCESS"ウインドウ上での操作は、通常の Windows とユーザーインターフェイスが 異なりますので、その操作が若干異なり、マウスの**左クリックで選択**し、**右クリックで決定**

測定データを保存するディレクトリ(フォルダ)は、

エネルギー制御学分野	dpt1
エネルギー変換機構学分野	dpt2
エネルギープロセス学分野	dpt3
溶接機構学分野	dpt4
化学・生物接合機構学分野	dpt5
複合化機構学分野	dpt6
数理解析学分野	dpt7
信頼性設計学分野	dpt8
機能性診断学分野	dpt9
ナノ・マイクロ構造制御プロセス学分野	spc1
スマートビームプロセス学分野	spc2
スマートグリーンプロセス学分野	spc3
信頼性評価・予測システム学分野	spc4
スマートコーティングプロセス学分野	spc6
金属ガラス・無機材料接合技術開発拠点	prj1
技術部	tecd

またこれらのディレクトリはあくまでも一時保存用ですので、メンテナンス等で、消去する可 能性があります、したがいまして、データは使用者各自の CD-R/RW に保存してお持ち帰りくだ さい。(画像データが無ければフロッピーディスクでも十分保存できます)。

【アイソレーションバルブについて】

アイソレーションバルブを閉めることにより、チャンバーの真空度が極端に悪くなった場合 もアナライザー側の真空を保ち、FEを保護することができます。FE が立ち上がっている状態 で、アナライザー側の真空が落ちるとチップが壊れる可能性が大きいです。したがって以下の 作業をおこなうときはアイソレーションバルブを閉じてからおこなってください。なお、アイ ソレーションバルブの開閉は、電子銃の Beam Voltage が完全に0V になってからおこなって ください。また、アイソレーションバルブを閉じるときは、時計方向に回して、少し回す感覚 が変化したように感じられるところ(少し軽く感じられます)で止めてください、閉めすぎる とバルブの寿命が短くなります。空けるときは、反時計方向に止まるところまで回してください。

- ・装置を使用しない時。(当然、終了時も)
- ・イントロ ステージ間のサンプルホルダーの受け渡し時。(V1バ ルブを開けるとき)
- ・試料の破断を行うとき。
- ・イオンガン使用のための、Ar ガス導入時。
- ・停電等、異常時。
- ・その他、チャンバーの真空度が、極端に悪くなると予想されるとき。

【試料について】

試料の作成法は、EPMA や SEM-EDX と同様に考えてください。超高真空装置ですから、 素手で取り扱ったり、油脂や、水分が付着したものは洗浄しなければなりません。

粉末試料(極力避けてください)や他孔質試料、その他ガスが出そうな試料の場合は、イントロで十分排気した後、測定チャンバーに導入し、さらに十分に真空排気してから測定してください。また、導電性テープや導電ペーストはできるだけ使用しないでください。やむ終えなく使用された場合は、真空度が悪くなり、使用可能になるまで時間を要することがありますので、使用前日に試料を導入し、翌日測定してください。

真空度が悪くなると(10⁻⁹torr以下)FEが**自動的に停止**し、再起動まで時間を要します。試料のホルダへの取り付け等については、次の表や図を参考にしてください。

取	0付け方法	対象試料	利点・特徴	欠点・注意点
ネジ止め法 ピン止め法 パネ止め法	・ネジ・ピン・パネで 押さえつける	 ・板状試料 ・ウェハ ・不定形試料 	・固定が容易 ・汚染が少ない	・微小試料には不向き
粘着法	・In, Pb などの柔ら かい金属に押しつ けて固定する	 ・微小試料 ・粉末試料 	 ・固定が容易 ・試料汚染が少ない 	 ・試料の飛散 ・金属からの情報
	 ・ ・ 導 電 性 両 面 テ ー プ で 固 定 する 	 ・微小試料 ・不定形の試料 ・線状試料 	・固定が容易 ・形状の制限がない	 粘着材からの汚染の 影響
	・Ag ペーストで固 定する	・不定形の試料 ・微小試料	・固定が容易 ・形状の制限がない	・粘着材/溶媒からの汚 染の影響
詰め込み法	・小さな穴の空いた 板や試料ホルダー に試料を詰める	・粉末試料	・試料汚染が少ない	・試料の飛散
網止め法	• Ni メッシュな ど 電気伝導性網で 覆って固定する	・絶縁性試料	・チャージアップの 軽減	 網の陰によりスパッ タリングできないことがある スパッタリングによるメッシュ成分の再付着
包み込み法	 Al 箔など電気伝 導性フィルムで包 み込んで固定する 	・絶縁性試料	・チャージアップの 軽減	 ・試料に損傷を与える 可能性あり

代表的な試料の取り付け方

*粘着法はお勧めいたしません。

*特別な場合以外は、金属マスク(押さえ板)を使った、ねじ止め法で固定してください。

各種試料ホルダ、取り付け例

(掲載されているホルダがすべてあるわけではありません、備え付けてないもので、必要なものがあればご相談に応じますのでお申し出ください、またホルダ等は絶対に持ち帰らないで ください。)

(a) 板状試料用ホルダー,(b) 板状試料用ホルダー,(c) 板状試料用ホルダー,(d) 表 面が傾斜した板状試料用ホルダー,(e) 表面が傾斜した板状試料用ホルダー,(f) 他試料 取り付けホルダー,(g) 塊状試料用ホルダー,(h) 断面分析用ホルダー,(i) 断面分析用 ホルダー,(j) 板状試料の取り付け,(k) 押え板を用いた粉末試料の取り付け,(l) 塊状 試料の取り付け,(m) 塊状試料の取り付け,(n) 断面分析試料の取り付け,(o) 断面分 析試料の取り付け,(p) 線状試料の取り付け

【非常時の対応】

装置から煙や炎が出た場合など身体、生命に危険を感じた場合は、すぐに、EMO-BOX の非常 停止スイッチを押してください。

その後、アイソレーションバルブを閉じてください。 地震、落雷その他の原因による、**停電**の場合は、アイソレーションバルブを閉じてください。

どちらの場合でも、速やかに報告してください。

ステージ動作中に暴走した場合には、EMO-BOX の非常停止スイッチは押 さないで、

"Stage Control"ウィンドウの STOP ボタンをクリックしてください。

【通常起動】

コンピュータ・ディスプレイの電源 ON。
 通常はディスプレイにこのような画面が出ている
 はずです。もし、全く違う画面が出ていたら、管理
 者に連絡してください。

2、真空度確認。

左 電子銃(FE)の真空度、右 測 定チャンバーの真空度、大きく違っ ていたら、その後の操作は絶対にお こなわないで管理者に連絡してくだ さい。

OFF.

3、電子ビーム電源 (18-195)、Beam Volt

4、EMO-BOX、Electorical Power(右下の左側の白いス チ) *PUSH ON*。

右下の左側の白いスイッチ。大きな丸のスイッチは、 非常停止スイッチなので、誤って押さないように注意。 他のスイッチにも手を触れないでください。

イッ

5、PC上の"PC-ACCESS"起動。

プリンタの設定画面 [OK]クリック。

"PC-ACCESS"が起動して、次の画面が出たら [**OK**] クリック。

📲 Physical Ele	ctronics PC-ACCESS SAM V7.3D
OK	
6166	

5、アイソレーションバルブ *CLOSE。* ノブをゆっくり回して、バルブが しまったところで、クリック感が あるので、それ以上回さないように注意してください。

6、BAIAS BOX のスイッチを *GND* から *Auto / +90* にする。

【Vacuum Watcherについて】

真空系の機器の操作や状態はこのプログラム上で実行・表示されます。

コマンドボタンの機能

- ・Pump Intro・・イントロを排気する、(蓋を押さえてください)。
- ・Backfill Intro・・イントロを大気圧にする、(窒素ガスでリーク、コンベクトロンで確認)。
- ・Transfer Sample・・サンプル移動のためにV1が開きます。
- Diff Pump ION Gun-ON・・差動排気をする、(イオンガン起動前に忘れないように、V3 が閉じて、V4が開きます)。
- Diff Pump ION Gun-OFF・・差動排気をやめる、(V4 が閉じます、イオンガン停止後 10 分以上経ってから、V4 が閉じます)。

・Turbo Pump-ON、Turbo Pum-OFF・・それぞれターボポンプをONまたは、OFFします。 それぞれの機能の実行後、実行状況はボタンの下のテキストボックスに表示されます。

Task XXXX complete と表示されたら実行終了です、これを確認してから次の操作に移ってください。

【試料導入】

外部 イントロ

1、窒素ガスボンベ、レギュレータ OPEN。 2、"Vacuum Watcher"の[BACKFILL INTRO]をク リック イントロが窒素でパージされます。 3、イントロ・コンベクトロンで大気圧になったこ とを確認してください。 4、イントロの蓋を取り、試料を素早くフォークに

装着してください。(取り外し、装填)。 5、窒素ガスボンベ、レギュレータ *CLOSE*。
 Pump Intro
 Backfill Intro

 Transfer Sample
 Diff Pump Ion Gun - ON

 Diff Pump Ion Gun - ON
 Diff Pump Ion Gun - OFF

 Turbo Pump -ON
 Turbo Pump - OFF

Vacuum Tasks

6、イントロの蓋を軽く抑えながら(きっちり真空引きできるように)、"Vacuum Watcher" の[PUMP INTRO]をクリックしてください。

7、イントロが真空引きされるのを待つ。"Vacuum Watcher"上で確認。

Intro Sample:イントロ ステージ

1、アイソレーションバルブ CLOSE、確認

2、"Stage Control"の"Positions"で[INTRO SAMPLE]を選択、[DRIVE]をクリック、[OK]のウィンドウが開くが、まだ[OK]はクリックしないでください。
 3、"Vacuum Watcher"の[TRANSFER SAMPLE]をクリック、(V1 が開く)。
 4、トランスファーロッドを押し込んで、試料をフォークからステージに移す、
 位置に問題が無いことを確認。(ロッドはフラットな面が上)
 5、[OK]をクリック、(ステージが動く、完全に動作が止まるまで待つ、Stage

Control上で確認)。

6、トランスファーロッドを引き抜く(V1は自動的に閉じる)。

7、測定チャンバーの真空度が 2×10⁻⁹より良いのを確認して、アイソレーショ ンバルブ **OPEN**。

注意!

最近、上記手順3で、[TRANSFER SAMPLE]をクリックした際に、完全にV1が開かなくて、再び閉じてしまうことが時々発生しています(現在のところ原因は不明です)。

[TRANSFER SAMPLE]をクリックした後にすぐにトランスファーロッドを押し 込まないで、"Vacuum Watcher"のウインドウがポップアップ表示されるのを待っ てから、押し込んでください。

もし、不完全オープンが発生し、V1 が閉じた場合("Vacuum Watcher"の状態ウ インドウに異常が表示されます)、再度、[TRANSFER SAMPLE]をクリックして ください。 1、"Stage Control"の"Positions"で**[PARK SAMPLE]**を選択、**[DRIVE]**をクリック、**[OK]**のウィンドウが開くが、まだ**[OK]**はクリックしないでください。

2、パーキング・アタッチメントの前後移動ダイアル(下のほう)を回転させて、1段前進(回転可能位置に移動さす)。

3、試料をパークする位置に、回転ダイアル(上のほう) を回転する、このとき必ずクリック位置で止めてください。 4、パーキング・アタッチメント前後移動ダイアルで試料 ホルダーにフォークを差し込む。(位置を確認しながら) 5、[OK]をクリック、(ステージが動く、完全に動作が止 まるまで待つ、Stage Control 上で確認)。

6、パーキング・アタッチメント前後移動ダイアルを回転させて、パーキング・アタッチメント

⁸⁰⁰⁰_Z 10を入力する

を一段後退。パーク位置(一番奥)まで後退(戻す)。

7、"Stage Control"で Z 軸を 10mm に移動する、 (ステージが上昇する)。

8、パーキング・アタッチメント前後移動ハンドルを回転させて、パーキング・アタッチメント を前進させて試料ホルダに軽く当て、確実に試料がフォークに差し込まれたのを確認してくだ さい。

9、パーキング・アタッチメント前後移動ハンドルを回転させて、パーキング・アタッチメント をパーク位置(一番奥)まで後退(戻す)。

Retrieve Sample:パーキング・アタッチメント ステージ

1、"Stage Control["]の"Positions"で[**Retrieve Sample**]を選択、[**DRIVE**]をクリック、[**OK**]のウィンドウが開きますが、まだ[**OK**]はクリックしないように注意してください。

2、パーキング・アタッチメントの前後移動ダイアル(下のほう)を回転させて、1段前進(回転の能位置に移動さす)。

3、装着する試料が装着位置(手前)に来るように、回転ダイアル(上のほう)を回転する、このとき必ずクリック位置で止めます。

4、パーキング・アタッチメント前後移動ダイアルを回して、試料を手前まで前進させます。

5、[OK]をクリック、(ステージが動く、完全に動作が止まるまで待つ、"Stage Control"上で 確認)。

6、パーキング・アタッチメント前後移動ダイアルを回して、試料を手前まで後退させ、フォークを試料から抜きます。(位置を確認しながら)

7、パーキング・アタッチメント前後移動ダイアルを回転させて、パーキング・アタッチメント をパーク位置(一番奥)まで後退(戻す)。

Extract Sample:ステージ イントロ

1、アイソレーションバルブ CLOSE、確認。

2、"Stage Control"の"Positions"で**[Extract Sample]**を選択、 **[DRIVE]**をクリック、**[OK]**のウィンドウが開くが、まだ[OK]は クリックしない。

3、"Vacuum Watcher"の**[TRANSFER SAMPLE]**をクリック、 (V1 が開く)。

4、トランスファーロッドのフォークを試料に差し込む、位置に 問題があるときは、**無理に差し込まないでください**。

4、[OK]をクリック、(ステージが動く、完全に動作が止まるまで待つ、"Stage Control"上で 確認)。

5、トランスファーロッドを引き抜く(V1は自動的に閉じる)。

6、測定チャンバーの真空度が2×10%より良いのを確認して、アイソレーションバルブ OPEN。

イントロ 外部(外部 イントロと同じ)

- 1、窒素ガスボンベ、レギュレータ OPEN。
- 2、"Vacuum Watcher"の[BACKFILL INTRO]をクリック イントロが窒素でパージされる。
- 3、イントロ・コンベクトロンで大気圧になったことを確認してください。
- 4、イントロの蓋を取り、試料を素早くフォークに装着する。(取り外し、装填)。
- 5、窒素ガスボンベ、レギュレータ CLOSE。

6、イントロの蓋を軽く抑えながら(きっちり真空引きできるように)、"Vacuum Watcher" の[PUMP INTRO]をクリックする。

7、イントロが真空引きされるのを待つ。"Vacuum Watcher"上で確認する。

【SEM像の観察】

- 1、測定チャンバーの真空度が 2×10⁻⁹より良いのを確認して、アイソレーションバルブ *OPEN*。
- 2、電子ビーム電源(18-195)、Beam Volt **ON**確認。

3、"PC-ACCESS"、**[HARD WARE]**選択、**[SEM]**選択。 4、"Stage Contlor"、**[CENTER]**を選択、**[DRIVE]**をク リック。ただし、試料がかなり分厚い(5mm くらい) ときは、試料の厚みを考慮してマニュアルで設定します。

HS Physical Electr	onics PC-ACCES	IS SAM V73D	Tue Oct 8 15:32
Bardware	Sample Setup	Setup Acquire	Acquire
SEM		f1	
Manual 2	Align	£2	

5、**[SEM Page1]**、 Settings **[Zalign]** 選択、Beam **ON**。

- The second	stical Dectorics PC-ACCESS SAM V730	Tue Oct 8 161	3 2002	NEWSTON		1010		X
A Vi	uto deo	Photo	Photo setup	Settin	g Read ys Beam I	SEM Page 3	SEM Page 2	Exit
		Scan	ning Ele	ctron Mic	roscope #1			
a	Settings Previous SA	ign 31	le 1	OkV10nA 1	OkVinA 10	kVmaxI 12k	V15nA Next	
b	Magnification 1	250 c	Magnific	ation 2	1000	Present Ma	gnification	1 = 1
d	Focus		66.600					
e	Stigmation	X=	-30.0	1 Y= 1	10.0			
g	Image Shift	X=	0.00	h Y=	0.00			
1	Image rotation (deg)		0					
1	Gun Lens Voltage (kV)		0.157					
k	Extraction voltage (kV)		3.100					
1	Beam		Dn	Off	Auto			
m	Beam voltage (kV)	2	1.000					
n	Scan rate		Fast	Medium	Slow			
0	Persistance		1					
p	Reduced Image		Yes No					

6、 **[SEM Page2]**、 DETECTER **SED**。 SED MULTI PLIER **ON**。

7、試料電流を測定する。[SEM Page1]、[Read Beam I] クリック。KEITHLEY485 ピコアンメ ーターで読み取る。設定電流のおよそ 60~80%程 度流れていれば正常です。

8、高さを調節する、[EXIT]、[MANUAL Z ALIGMENT]、"Stage Control"の Z 軸を上下させて、ピーク位置が指定位置になるように調整する。調整後、[EXIT]、[HARDWARE]、[SEM]。 9、低倍率時、FOCUS で像がきっちり観察できるように調整、高倍率にしてさらに調整。 10、X3000~5000 で FOCUS STEERING で像の位置が移動しないように調整。 11、STIGMATION で像が流れないように調整、20-625、GUN CONTROL の FINE FOCUS

ダイアルでピントの微調整、これを繰り返して、ベストの状態にします。 12、[AUTO VIDEO]で明るさ、コントラストの自動調節ができます。

13、像を保存するときは、[PHOTO SETUP]でおこないます。

14、 **[PHOTO SETUP]**で、出力先(ファイル、プリンタ等)、出力内容を選択して、Image Output で出力します。

【SEMメニュー】

SEM PAGE 1

a,Setting b,Magnification d,Focus e,Stigmation g,Image Shift i,Image Rotation j,k, - 触らない。 l,Beam m,Beam Voltage h,Scan Rate o, - 触らない。 p,Reduced Image

SEM PAGE 2

a,b, - SEM PAGE 1 と同じ。 d,Detector e,SED Mutiplier f, - 触らない。 g,Contrast Control h,Brightness i,DC Offset j,k,l,m,n,o,p,q, - 触らない。

SEM PAGE 3

a,b,d,e,g, - SEM PAGE 1 と同じ。 i,j,k,l,m,n, - 触らない。 o,Focus Steering q, - 触らない。 r, - SEM PAGE 1 と同じ。 s,t,u, - 触らない。

【SERVEY】

様々な分析法で測定する前に、試料表面上にどのような元素が分布しているかを知るためにサ ーベイをおこなっておくと便利です。

1、[LOAD DISP]、[DIR]で測定データ保存先のディレクトリを、選択、または新しく作る。

2、**[SAMPLE SETUP]、[SAMPLE SETUP]**で必要ならば、試料名(ファイル名)、コメント 等を入力する。

Physical Elect	ones PO-ACCESS SAM V750	Tile Oct 0 154	1 2002	والمراجع والمحافظ الأفري	-	ويعتبد بالمراجع		×
Bardware	Sample Setup Setup Sequire	Acquire	Load Display	List Parms	Auto mation	System Control	PE/HCP MCD	NEXT BANK
	Sample Setup	fl						
1	Area Define	£2						
	Area Select	£3						
	Reg Image Setup	24						
	Register Image	£5						
	Line Define	16						
	Line Select	£7						
	Zalar Setup	f8						
	Dir	£9						

3、**[SETUP ACQUIRE]**、**[SETUP SERVEY]**で測定条件を設定する。Full 観察野全域をサ ーベイする、Point **[SAMPLE SETUP]**の**[AREA DEFINE]**で指定した点をサーベイする。

Physical Electron	ones PO-ACCES	IS SAM V730 The Oct. I	1542 2002					
Bardware	Sample Setup	Acquir	e Load Display	List Parms	Auto mation	System Control	PE/MCP MCD	NEXT BANK
		Setup Survey	fl					
		Setup Mult	£2					
		Setup Profile	£3					
		Setup Line	14					
		Setup Map	£5					
		Setup More	£6					
		Resume Acquire	17					
		Change Profile	18					
		Acq. Display	£9					

4、[ACQUIRE]、[ACQUIRE SERVEY]でサーベイ開始。

Physical Factor	mic: PO-AGOES	S SAM VISD	Tim Oct #10	542 2002						×
Bardware	Sample Setup	Setup Acquire	in the second second	Load Display		List Parms	Auto mation	System Control	FE/MCP MCD	NEXT BANK
			Acquire	Survey	f1					
			Acquire	Mult	£2					
			Acquire	Profile	13					
			Acquire	Line	£4					
			Acquire	Мар	15					
			Acquire	More	£6					
			Resume J	Acquire	17					
			Foregrou	und	£8					
			Acq. Di	splay	19					

19

【イオンガン起動】

1, **[HARDWARE] [SEM]**, BEAM **OFF**, SED MULTIPLIER **OFF**.

2、アイソレーションバルブ *CLOSE*(サーモバル ブを手動で開くときのみ必要)。

3、"Vacuum Watcher"、**[DIFF PUMP IONGUN ON]** クリック、(V3 CLOSE、V4 OPEN、イ ントロの排気が停止し、イオンガンが排気される、 差動排気をおこなう)。

4、"Iongun Control"、[VIEW]、[SHORT]のチェックをはずす。 5、スタンバイ条件の設定。

6、[GUN STATE] [STAND BY]にチェックする、Ionnizer に 通電する、この状態でないと、**ガスは出ません**。

7、[VIEW] [EXTRACT PRESSER]でガス圧を表示させます。

C Standby

Off

Backfill Intro

Diff Pump Ion Gun - OFF

🔲 Enable Time

Time (min): 0.2

Vacuum Tasks

Pump Intro

Transfer Sample

Diff Pump Ion Gun - ON

8、サーモバルブ手動調節ノブをゆっ くりと開き、アルゴンガス圧、30~ 40mPa にする、サーモバルブは、お よそ 1 回転したところから開き始め る、表示の反応はかなり遅く、ガスは 出始めると急速に増加することがあ るので注意してください。

9、RVG050G(サーモバルブコント ローラ)の電源スイッチ **ON**、上の

セットスイッチを **SETPOINT**、(LIMIT ではバルブが閉じる)。 10、SETPOINT の設定目盛は1目盛で 5mPa、通常3目盛(15mPa)。

- 11、ガス圧が15mPaに落ち着いたら、アイソレーションバルブ OPEN。
- 12、 [HARDWARE] [SEM]、 BEAM ON。

13、イオンガンの照射を停止したときは、セットスイッチを SETPOINT LIMIT にする。 14、試料の交換等で、イントロを真空引きする時は、差動排気を停止しなければならないので、 イオンガンを停止する。[GUN STATE] [OFF]にチェックしてください。

【イオンガン停止】

1、電子ビームが出ていないことを確認して、**アイ** ソレーションバルブを閉じる。

2、イオンガンを停止させてから 10~20 分経った ら、"Vacuum Watcher"の[**DIFFPUMP IONGUN OFF]**(差動排気停止)をクリック。(V4 CLOSE、 イオンガンの排気が停止し、イントロが排気され る)。万が一、真空度が 10⁻⁹より悪くなってしまっ たら、再び差動排気を開始します。

Pumpintro	Backfill Intro
Transfer Sample	
Diff Pump Ion Gun - ON	Diff Pump Ion Gun - OFF

3、RVG050G(サーモバルブコントローラ)の電源スイッチ OFF、上のセットスイッチは LIMIT で、バルブが閉じているはずであるが、もし SETPOINT になっているときは、LIMIT にする。

4、サーモバルブが冷えてくると、バルブは開き始めるので、手動調節ノブを少しずつ閉めます。

5、"Vacuum Watcher"の**[PUMP INTRO]**をクリックする。(V3 OPEN、イントロが排気される)。

注意!

最近、イオンガン停止時の操作ミスによる、トラブル(チャンバーの真空が急激に 悪化し、FE、イオンポンプが停止する)が続けて発生しました。装置に多大なダ メージを与える恐れがありますので、上記の手順、および下記の注意を必ず守って ください。

RVG050G(サーモバルブコントローラ)の電源スイッチを OFF にすると、はじめは 何も変化がありませんが、時間がたち、冷えてくるとバルブが開いた状態となり、 そのまま放置すると、多量のガスがチャンバー内に流入し、真空が悪くなります。 真空計から目を離さず、真空度が悪くなってきたら、それに応じてバルブを時計回 りに少しずつ閉め、真空度が悪くならなくなったら、最後まで閉めてください。

【その他分析の流れ】

この装置では、試料表面上に存在する元素を広いエネルギー範囲で素早く判定するサーベイの ほかに、

・指定した複数の元素について、狭いエネルギー範囲で、高分解能測定ができる、マルチプレックス測定(Multi)。

・イオンガンを用いてスパッタリングしながら測定する、深さ方向の分析(Profile)。

・指定したラインに沿って、複数の元素の分布情報を得る、線分析(Line)。

・2次元表面上の、複数の元素の分布情報を得る、面分析(Map)。

が可能です。

それぞれの分析の流れは、まず、[SETUP ACQUIRE] で分析法を選択し(SETUP XXXX) 測定条件などを入力した後、[ACQUIRE]で測定を開始し、データ解析は MultiPack という ソフトウエアでおこないます。詳しくは Model680 操作マニュアル、もしくは簡易操作マニュ アル(分析・応用編)を参照してください。

【通常停止】

BAIAS BOX のスイッチを Auto / +90 から GND にする。
 アイソレーションバルブ *CLOSE*。

2、"PC-ACCESS"、[SYSTEM CONTROL]選択、[EXIT ROGRAM]選択。

3、[YES]をクリック。

4、EMO-BOX、Electorical Power **PUSH OFF**。 下段の左側の白いスイッチです。

5、コンピュータ・ディスプレイの電源 ONF にしてください。

6、使用記録簿を必ず記入してください。

7、持ってきたものは、忘れずに**全てお持ち帰り願います**、また基本的持ち込んだ試料も、取り 外して、持ち帰ってもらいますが、翌日に続きの測定をするなどの理由でで、チャンバ内(パ ーキングアタッチメント上も含めて)や、デシケータ内に残しておく場合は、使用記録簿にそ の都度を記入してください。もしなにも記入していない場合、メンテナンス等で処分する場合 があります。