Corrosion Phenomenon Evaluation of Mg Alloys Using Surface Potential Difference Measured by SKPFM

1

Background

Mg: Lightest industrial materials with Poor corrosion resistance caused by galvanic potential

Focusing on interface between α -Mg and dispersoids

Objectives

4 Galvanic corrosion was quantitatively evaluated by surface potential difference ΔV_{SPD} .

Corrosion phenomenon analysis

Measurement of surface potential

Surface potential map

5wt% Salt water immersion test Corrosion time : 18 hour Solution temperature : 30 °C

Salt water immersion test

What phases are corroded ?

Topographic changes at interface

Macro-scale corrosion analysis Salt water immersion test

Experimental condition

- Solution concentration
- Solution temperature
- Testing time
- Rotation rate of stirrer : 420 rpm

- : 5 wt%
- : 30 °C
- : 18 hours

Surface finish

1. Waterproof abrasive paper in tap water up to #4000 2. Mirror finish by buffing using diamond paste

Micro-scale corrosion analysis Surface potential measurement by SKPFM

How about relationship between standard electrode potential V_{SEP} and work function ϕ ?

Micro-scale corrosion analysis

Standard electrode potential – Work function

Micro-scale corrosion analysis

Identification of dispersoids 1/2

Optical microscope image attached to SKPFM

- A) Difficult to identify dispersoids.
- B) Markings effective to detect the same position before and after corrosion test.

B) Three indentations by Vickers hardness tester.

Marking by Vickers hardness

Identification of dispersoids 2/2

Position of dispersoids can be identified by three indentations.

Cantilever is set to the target position.

Macro-scale corrosion analysis result

SEM image before and after corrosion by salt water immersion test

Micro-scale corrosion analysis result

Micro-scale corrosion analysis result

Micro-scale corrosion analysis result

Topographic change before and after corrosion test

Surface potential difference at β phase

Surface potential map

Surface potential difference at Al₆Mn

Surface potential map

SEM image

Surface potential difference (V)				
Point	A-B	C-D	E-F	G-H
	-0.46	-0.53	-0.46	-0.45
	-0.50	-0.50	-0.53	-0.53

Average : 0.50 (V)

Effect of strain on surface potential⁷⁷

point	•	-	Ŭ	-	Ŭ		•	•
Maximum (V)	1.38	1.37	1.36	1.39	1.40	1.39	1.37	1.40
Minimum (V)	1.31	1.25	1.29	1.31	1.27	1.29	1.28	1.25
Average (V)	1.35	1.31	1.33	1.35	1.34	1.34	1.33	1.33

Transport of corrosion

Conclusions

- SKPFM available for quantitative evaluation of corrosion phenomenon.
- Good correlation between surface potential difference and corrosion loss.

		surface	Difference of height (nm)		
		difference (V)	before corrosion after corrosion		
α -Mg – β phase		0.0 - 0.1	5 - 20 → 89.69		
α-Mg – Al₀Mn	Right	0.4 - 0.6	158.30→ 517.18		
	Left		183.58 → 435.04		