Tribological Property and Biocompatibility of Titanium Plate Coated with Carbon Nanotubes

Background

Carbon nanotube

- Superior self-lubrication
- High yield stress
- High Young's modulus
- High electrical & thermal conductivity
 Naturally uniform
 as bundles due to van der Waals forces

- High strength
- Good corrosion resistance
- Good biocompatibility
- Low density

Poor Tribology property contacted with other materials and Ti

Objectives

- 1. Investigate tribological property and wear behavior of pure Ti plate coated with CNTs under dry sliding condition.
- ① Network-structured MWCNTs coating on Ti plate.
- ② Analysis on interface between CNTs and Ti substrate.
- ③ Effect of annealing temperature on tribological behavior of CNTs coating films.
- 2. Investigate the biocompatibility of pure Ti plate coated with CNTs.

CNT dispersions

CNTs bundle disassemble in zwitterionic surfactant solution

CNTs distributed in water after ultrasonic vibration

CNTs distributed in water with surfactants

Preparation of specimen

SEM and AFM observation

Observed by SEM & AFM on CNTs coated on pure Ti plate annealed at 1123 K

XRD result

- with CNTs annealed at 1123 K (a)
- with CNTs annealed at 973 K (b)
- as-received pure Ti Plate (c)

TiC α-Ti(hcp)

XRD result

- with CNTs annealed at 1123 K (a)
 with CNTs annealed at 973 K (b)
- as-received pure Ti Plate (c)

Diffraction Angle, 2θ / degree

XRD result

(a) with CNTs annealed at 1123 K(b) with CNTs annealed at 973 K(c) as-received pure Ti Plate

Relationship between lattice constant

SEM-EDS analysis result

Cross-section of pure Ti plate coated with CNTs annealed at 1123 K

Hardness result

(a) with CNTs annealed at 1123 K(b) with CNTs annealed at 973 K(c) as-received pure Ti Plate

Ball-on-disk wear test Load F=100gf Ti Plate SUS304 ball (φ; 4.7mm)

Total sliding distance, L =113m (\leftarrow 31.4 mm/s×3600s)

Test condition: Room Temperature, No lubricant (Dry condition)

Ball-on-disk wear test results

Ball-on-disk wear test results

Wear track of Ti plate as received (with NO film) and SUS 304 ball

Pure Ti Plate Counterparts material (SUS 304 ball) 00µm 500µm 500µm Wear debris Fe Cr 500µm 500µm **Abrasive wear** area

Ball-on-disk wear test results

Wear track of Ti plate coated with CNTs annealed at 1123K and SUS 304 ball

Biomedical application of Titanium

Object #2

Investigate the biocompatibility of pure Ti plate coated with CNTs

Surface modification of Titanium surface by CNTs Facilitating tissue engineering

CNTs hold as a tissue engineering substrate ?

Examined

Cell adhesion after 72 h

Biocompatibility of rat

Tissue engineering - Cell adhesion test result

Cell attachment and spreading out Ti plate coated with CNTs > Ti plate

Well-demonstrated **CNTs** in the tissue engineering

Tissue engineering - Study of bioactivity

Evaluate the biocompatibility of CNT-net nano morphologies

- Observations at 5 weeks after implantation into rat
- Inflammatory cell infiltration was rarely observed
 - good biocompatibility
- Promoting new bone formation by CNT-net

- 1. CNTs were successfully coated on Ti plate annealed at 973 K and 1123 K.
- 2. Formation of <u>network-structured CNT films</u> was effective to <u>reduce the friction coefficient</u> of Ti plate due to their excellent self-lubricant effect.
- 3. Annealing at 1123 K caused <u>TiC formation</u> at interface between CNTs and Ti substrate, and then excellent metallurgical bonding was obtained. As a result, <u>CNT films</u> were obviously <u>remained</u> <u>at wear track</u> even after dry sliding when SUS304 stainless ball was used as a counterpart material.
- 4. CNT-net <u>nano modification</u> provided the acceleration of new bone formation to the Ti plate surface.

